If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+22x+100=0
a = 1; b = 22; c = +100;
Δ = b2-4ac
Δ = 222-4·1·100
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{21}}{2*1}=\frac{-22-2\sqrt{21}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{21}}{2*1}=\frac{-22+2\sqrt{21}}{2} $
| 7w+4-3w=12 | | 3x+8=3x+30 | | 10x=6*15 | | 8x+3/2=4x+5 | | -18=0.25y | | 34m=3*51 | | 19-7/8x=133/16 | | 2w+12=5 | | 9+3x=-5x-7 | | 3z+27=8z | | 8(4x-5)=37 | | 2z-21+z=2(4z-48 | | 12(9+x)=9*26 | | 3x²+27x=0 | | X+(x-2)=16 | | n+12=1 | | 2x^2-5x+6=6 | | x2+8x−4=0 | | F(x)=6x2+-900 | | W(3w+3)=2268 | | -8z+94=1/2(z-3) | | 10x+10=30x | | -z+14+-7z+8=1/2(z-3) | | 5=x2-8x+21 | | -1/2x+1/3=-1/5x-1/6 | | 16=5x+x | | 13x=16*16 | | -7/2=1/4+f | | 9u-72=10u-84 | | 2x+4x+12=8 | | 5.238=-2.013+x | | 10x=15*12 |